

somos.com o 844.HEY.SOMOS P.O. Box 8122 Somos External
 f 732.514.6723 Bridgewater, NJ 08807-8122

RouteLink API 2.0

October 02, 2018

Version: 0.1

CONFIDENTIAL & PROPRIETARY INFORMATION OF SOMOS, INC.
The information contained in this document is confidential and proprietary to Somos, Inc. and is intended for the express
use of RouteLink customers and their designated representatives. Any unauthorized release of this information is
prohibited and punishable by law. Somos, Somos and Design, 4 Quarters Design, SMS/800 and SMS/800 Toll-Free Means
Business are trademarks of Somos, Inc.
Copyright © 2018 Somos, Inc. All rights reserved.

SP ECIF IC AT ION S

RouteLink API 2.0 – Version 0.1
October 02, 2018

2
somos.com Somos External

RouteLink API

• For general information about this document, please call or text the Help Desk at
844.HEY.SOMOS (844.439.7666), Option 1.

TRADEMARK ACKNOWLEDGEMENTS
All other brands or product names are trademarks or registered trademarks of their respective
companies or organizations.

Copyright © 2018 Somos, Inc. All rights reserved.

SECURITY CLASSIFICATION – SOMOS EXTERNAL
Property of Somos, Inc.

RouteLink API 2.0 – Version 0.1
October 02, 2018

3
somos.com Somos External

Revision History
Revision History

Date Version Description
October 02, 2018 0.1 Initial version of API 2.0

RouteLink API 2.0 – Version 0.1
October 02, 2018

4
somos.com Somos External

Table of Contents
Revision History .. 3	
1.	 Audience .. 5	
2.	 Introduction ... 5	
2.1	 Event Queue Order .. 5	
3.	 API .. 5	
3.1	 Download Request ... 5	
3.2	 Download Response .. 6	

3.2.1	 Download Responses with No Events .. 8	
3.2.2	 CRN “add”, SHA-1, and the Optional CPR .. 8	

3.3	 Refresh Token Request ... 9	
3.4	 Refresh Token Response .. 9	
4.	 Initialization ... 9	
4.1	 Initialization Message Details .. 11	
5.	 Audit ... 11	
5.1	 Audit Message Flows ... 11	

5.1.1	 Starting an Audit .. 11	
5.1.2	 Description of a Successful Audit .. 12	
5.1.3	 Description of an Audit Correction ... 14	
5.1.4	 RouteLink Server Actions on Hash Failure .. 15	
5.1.5	 Input to Hash Algorithm .. 15	

5.2	 Audit Message Details ... 16	
5.2.1	 Audit Request from RouteLink Server .. 17	
5.2.2	 Audit Responses from RouteLink Client .. 17	
5.2.3	 Audit Completion ... 17	

5.3	 Hash Mismatch Troubleshooting .. 18	
6.	 CPR API .. 18	
6.1	 /cpr api request .. 18	
6.2	 /cpr api response ... 19	
7.	 Error Detection .. 19	
8.	 Appendix .. 21	
8.1	 JSON Call Processing Record Structure .. 21	

8.1.1	 Node Containers .. 21	
8.1.2	 Branch tag.. 22	
8.1.3	 Decision Nodes Types ... 22	
8.1.4	 Action Nodes ... 24	
8.1.5	 Qualifiers .. 26	
8.1.6	 JSON CPR Examples ... 26	

RouteLink API 2.0 – Version 0.1
October 02, 2018

5
somos.com Somos External

1. Audience
The audience for this document is the development team using the RouteLink API 2.0 to
connect to the RouteLink service. This document assumes the reader is already familiar with
the SMS/800, Toll Free Numbers, REST, JSON, and message digests.

2. Introduction
This document describes the API to download Call Routing Number (CRN) routing
information from the RouteLink Server. CRNs are frequently referred to as Toll Free
Numbers (TFNs) and are often used interchangeably in this document. In general, RouteLink
contains an Event Queue with First-In-First-Out events such as “add TFN” and “delete TFN”
to be downloaded to the RouteLink Customer (the RouteLink client), in order.

2.1 Event Queue Order
The RouteLink Client requests events to be downloaded. The events MUST be downloaded and
processed in FIFO order to guarantee the accuracy of the client's database.

3. API
The interface between the RouteLink Server and the RouteLink Client is REST/JSON. The client
sends HTTPS GET and POST requests to the server. The server responds to the GET or POST
with a JSON encoded response.

The following table enumerates the possible URLs. Each URL is preceded by "/routelink/v2".

API URLs
Url Comments
/download Download events from the Event Queue.
/initialize Set the event queue back to an initial download.
/audit Reply to an audit request from the RouteLink application
/refreshToken
/cpr?sha1=

Request a new token with a new expiration date.
Request JSON cpr by passing sha1 value which is required

IMPORTANT: Due to the large amount of data exchanged between RouteLink® and the client
application, enabling gzip compression in the transport layer is strongly recommended. Compression is
enabled by the client on a per-transaction basis. Each request sent by the client must indicate support for
gzip compression by adding the appropriate information to the header. Specifically, the request header
must state the client can accept gzip encoding via the header parameter: “Accept-Encoding: gzip” as
reflected in the wget examples below.

3.1 Download Request
The following is an example REST/JSON download request:

GET /routelink/v2/download HTTPS/1.1
Authorization: Bearer c0d97b52-35d9-32c2-a37d-6126a186a844

There are several tools that can be used to aid in the initial development of the download.
Below is an example that can be used in a UNIX environment.

RouteLink API 2.0 – Version 0.1
October 02, 2018

6
somos.com Somos External

The wget tool can issue a download like this example:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer
c0d97b52-35d9-32c2-a37d-6126a186a844" https://api-
routelink.somos.com/routelink/v2/download

More generally the wget command is using the access token as follows:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer <insert
your access token here>" https://api-
routelink.somos.com/routelink/v2/download

The download request can download several messages at once. The maximum number of
messages is 5000 at one time. To download a specific number of messages, include the
number of messages at the end or the URL as follows:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer <insert
your access token here>" https://api-
routelink.somos.com/routelink/v2/download/1000

In the above example, the client is requesting 1000 messages. If the /1000 portion of the URL
is not included, RouteLink will return a default number of messages to the client. This
optional message count is a maximum number of messages the client is requesting so
RouteLink will return up to that number of updates, depending on the number of available
updates for the client.

The client SHOULD also send to RouteLink the last message index that it received (see
message response below). The following example demonstrates the correct syntax:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer <insert
your access token here>" https://api-
routelink.somos.com/routelink/v2/download/1000?lastIndex=78233

In the above case, RouteLink will return 1000 messages to the client where the id is greater
than 78233. The id value ranges from 0 to 2^63 -1 (9,223,372,036,854,775,807). Although
the lastIndex parameter is not required, it allows RouteLink to verify that last set of messages
received by the client.

3.2 Download Response
The following is an example of a JSON download response from the RouteLink that includes
3 events in a JSON array. The first and last are add events where one includes the optional
CPR.

{
"events":[

RouteLink API 2.0 – Version 0.1
October 02, 2018

7
somos.com Somos External

{
"action":"add",
"crn":"8005001212",
"ror":"ROR01",
"sha1":"<40 chars>",
"cpr":null,
"id":1000

},
{

"action":"delete",
"crn":"8006001212",
"id":1001

},
{

"action":"add",
"crn":"8007001212",
"ror":"AR26",
"sha1":"<40 chars>",
"cpr":"<variable length JSON CPR>"
"id":1002

}
]

}

Field Descriptions
Field Range Comments

 events an ordered array A list that MUST be processed in order to maintain the
accuracy of the client's local DB.

action

“add”, “delete”,
"cpr" or
"audit_request"

Add or delete a CRN from the client DB. A redundant add (for
an already active CRN) must be treated as a replace of the
CRN’s data, such as replacing the ROR (and the CPR, if
present).

crn exactly 10
printable
digits

Usually a 10 char CRN (e.g. “8005551212”). But for template
CPRs, this value can start with the number "0".

ror 1 to 5
printable
chars

The RespOrg ID associated with the CRN. This is always
present for an "add" and never present for a "delete".

 sha1 exactly 40
printable hex
digits

The SHA-1 hash of the associated JSON CPR. A SHA-1 hash is
exactly 40 characters long, as printable hex.

For example:

"E076B32E287452057362532D38E239F9462D3AF4". The field is
always present for an "add" and never present for a "delete".

 cpr characters The Call Processing Record presented as a JSON construct.

RouteLink API 2.0 – Version 0.1
October 02, 2018

8
somos.com Somos External

This field is only present for an "add" and even then it is
optional and only sent the first time the CPR SHA-1 hash is
encountered. The client is required to save this value. The next
time the same SHA-1 hash occurs, null is sent, and the client
should refer to the earlier CPR value.

See Section “8.1 JSON Call Processing Record Structure” for a
detailed description of the CPR layout in its JSON format.

 id number This value represents an index used by RouteLink to track
various data types. It is provided to an API client to allow it to
request specific messages that may have been missed. An API
client should provide the last (highest) id value it received from
RouteLink as the lastIndex field on the next request to
RouteLink.

This value may be null when RouteLink is performing an audit
(initial audit event will have id which should be sent in
subsequent download request after successful audit) with an API
client or while requesting a CPR.

It may also be set
to null (see
description)

3.2.1 Download Responses with No Events
If the RouteLink Server has no events to send in the response, or if the RouteLink Server is
currently unable to reply with events for any reason, then an empty event list is sent. The
client must assume that there is no more data to currently download, and try again later.

The JSON for an empty event array is:

{"events" : [] } // the empty event array

3.2.2 CRN “add”, SHA-1, and the Optional CPR
When an add is encountered, the entire JSON CPR is hashed using the SHA-1 algorithm. The
algorithm produces a 20-byte hexadecimal value that is converted into 40 printable bytes and
sent in the "sha1" parameter of the "add" event.

RouteLink API 2.0 – Version 0.1
October 02, 2018

9
somos.com Somos External

When a unique SHA-1 hash is encountered for the first time by the RouteLink Server, it sends
the full JSON CPR as well as its SHA-1 hash to the RouteLink Client.

The client MUST keep track of both the SHA-1 hash and the JSON CPR in its local DB for later
audits. Also, when the RouteLink Server encounters the same SHA-1 hash in future "add"
events, the RouteLink Server only sends the SHA-1 hash given the likelihood the client already
has the full CPR (i.e. sending the CPR would be redundant). The advantage of this approach is
that bandwidth for both the client and the server is significantly reduced since a large percentage
of CPRs are re-used across CRNs. If, for any reason, the client does not have a matching CPR
for the SHA-1 it can be requested via the ‘/cpr?sha1=’ API.

3.3 Refresh Token Request
Each client token has an associated expiration date. Once the token expires, the token will be
rejected by RouteLink. The following is an example REST/JSON refresh token request:

GET /routelink/v2/refreshToken HTTPS/1.1
Authorization: Bearer c0d97b52-35d9-32c2-a37d-6126a186a844

Note that the token inside the request is the "old" token about to expire (the one you are asking to
refresh). This command fails if your token has already expired. If that happens, you must
manually use the RouteLink web site to acquire a new token.

3.4 Refresh Token Response
The response to a refresh token request contains the new token. Upon receiving the response, the
old token is invalid and only the new token can be used for any future API requests.

The following is an example JSON token refresh response from RouteLink.

{
"token":

 "c0d97b52-35d9-32c2-a37d-6126a186a844",
"expiration":"01/09/2017 15:56:21" // always in GMT

}

Field Descriptions
Field Range Comments
token Printable String The new token. The former token is no longer

valid.

expiration

MM/DD/YYYY
HH:mm:ss

The expiration timestamp of the new token. This
value is always in GMT. The HH:mm:ss portion
is in 24-hour format.

4. Initialization
When a RouteLink Client registers with the RouteLink service, the RouteLink Server resets the
client's status to download from beginning. Note that the CPR data will be sent first as a "cpr"
event followed by the CRN data as "add" events. The CPR records contain a hash value and any

RouteLink API 2.0 – Version 0.1
October 02, 2018

10
somos.com Somos External

CRN that uses that CPR will also contain the same hash value in its "add" event record. Once
the initial "add" events are downloaded, all subsequent downloads are changes in CRN state
("add" and "delete" events). The initial load is composed of millions of events, but this
initialization only has to occur once for the new client.

In the case where the client has an unrecoverable failure, it may need to reset all of its data and
"start over". It is left to the RouteLink Server discretion to refuse an unexpected initialization
request (for example the RouteLink Server could limit initializations to being accessible only
after manual intervention indicates it is allowed for a client).

The client communicates an initialize request to the server using the following URL:

/routelink/v2/initialize

The RouteLink Server can issue a success or failure response. The failure response follows the
same rules as presented in the Error Detection section of this document. The success JSON
response is as follows:

{ "result": "success" } // See Error Detection section for errors

Failure responses are left to the RouteLink Server's discretion but could include a rejection due
to too many initializations being requested. The error message format is described in Section 6 –
Error Detection. During the "official" certification process, a full download of all data must be
performed and requests for a single NPA will result in an error response.
A success reply will initiate logic at the RouteLink server to prepare the download data for the
client. The following is an example steps that make up the initialize process.

1. The client clears its DB of all CRNs.
2. The client sends the initialize request.
3. The server resets the client's status to begin the download.
4. The client should periodically call the /routelink/v2/download URL and data will be

sent once it is available.
• If the client sends the lastIndex parameter as part of the download command, use a

value of zero following the call to initialize.
5. The client, after downloading all the "cpr" and "add" events from its event queue,

continues to receive new download events from the ongoing events that occurred
during initialize process.

• When the client consumes the last record from the initialization and starts receiving
real-time updates, a large jump in the lastIndex value is expected (i.e. greater than 1
million)

Note: we are not taking the snapshot of DB for initializing the customer. Real time updates
happen on RL during client’s initialize process. We suggest client to have the referential integrity
between crn’s sha and cpr’s SHA-1 so you will know if there is a new SHA-1 value during the
initialize process.

If you find SHA-1, but there is no CPR in your db, you can either reject that message or use /cpr
api to get the latest CPR for that sha1 value. Refer to sec 6 for /cpr details
If you reject the message, make sure you are consuming it through live updates. While

RouteLink API 2.0 – Version 0.1
October 02, 2018

11
somos.com Somos External

consuming live updates, if you see CPR value in your response, that indicates a new CPR. If
CPR is null, that shows it’s already existing.

If the RouteLink Server fails to initialize for any reason, it returns a failure response. The client
is free to retry later if the failure is temporary. Please refer to the Error Detection section of this
document to determine if an error is temporary or permanent.

4.1 Initialization Message Details
The following section describes the JSON format of the "cpr" message. Once all of the CPR
messages are downloaded by the API client, "add" events for each call routing number will
follow. The client should expect to receive more than 250,000 "cpr" messages and over 40
million "add" messages. The client may download up to 1000 CPR messages in a single
transaction.

{
"events":[
{

"action":"cpr",
"sha1":"<40 chars>",
"cpr":"<variable length JSON CPR>",
"id": 1000

},
{

"action":"cpr",
"sha1":"<40 chars>",
"cpr":"<variable length JSON CPR>"
"id": 1001

 }] }

5. Audit
The RouteLink Server maintains the master CRN/CPR database. Each downstream RouteLink
Client therefore has an effective copy of the master database by downloading the add and delete
events as they are made available by the server. As discrepancies are found events are placed on
the queue and the RouteLink Client downloads the corrective event.
List of discrepancies:

• CRN missing in RouteLink client
• CRN present in RouteLink client but not in RouteLink server
• Mismatched ROR
• Mismatched CPR

5.1 Audit Message Flows
The sections that follow describe the message flow for the audit for success and failure
conditions. Lastly, this chapter enumerates the specific request and response messages used by
the audit.

5.1.1 Starting an Audit
The RouteLink Server decides when an audit is necessary by placing an audit event for a specific
prefix on the client's event queue. The following diagram describes the events and flow of
messages that occur when a prefix audit for 800 is started. It's important to understand that there

RouteLink API 2.0 – Version 0.1
October 02, 2018

12
somos.com Somos External

will be an audit for each 8xx prefix that is valid at the time of the audit. Currently these prefixes
include 800, 833, 844, 855, 866, 877, 888, and 0. Numbers starting with a 0 denote template
records. Please note this list will be expanded as new toll-free prefixes are added such as 822.

5.1.2 Description of a Successful Audit
The following message flow diagram shows the messages for the case when the audit of a prefix
is successful. Only 3 messages are required in this best case.

The term, calculate hash, is used to indicate that a SHA-1 hash (40 printable hex digits) is
generated from the data stored locally. The specific method for creating the hash is detailed in a
later section.

RouteLink API 2.0 – Version 0.1
October 02, 2018

13
somos.com Somos External

The diagram points out that both the sever and the client must use databases that are not
changing during the audit (to avoid auditing a moving target). When the audit event arrives at the
client through an event download, the two databases should, theoretically, be identical. The
databases are compared by having both sides calculate the hash for the given prefix.

The “prefix” in the audit indicates to the algorithm to process all CRNs that start with that prefix.
In SQL terms, the SELECT can be thought of as using a "where" clause like (in this example the
prefix was 800):

“WHERE (crn LIKE '800%')”.

The server will request a hash value over a given prefix using the audit request message and the
client must calculate the hash and return the result to the server using an audit reply message.
The audit reply message is sent to the server using an HTTPS POST. An example of sending an
audit reply using wget is as follows:

wget --header="Content-Type: application/json" --header="Authorization: Bearer
<access token>" --post-data='{"action":"audit_reply","prefix":"800","sha1":
"<40 character hash value>"}' https://api-
routelink.somos.com/routelink/v2/audit

The server compares the client's hash to its own hash to see if the two match. Of course, the
calculation of the hash must be done using data fed into the algorithm in the exact same order by
both sides. There is no requirement that the two sides use the same DB schema – but, the data
must be fed into the SHA-1 algorithm in the same order. The data includes the CRNs, RORs, and
CPR hashes (not the CPRs themselves). The hash calculation and the order of the data is
described in more detail later.

RouteLink API 2.0 – Version 0.1
October 02, 2018

14
somos.com Somos External

5.1.3 Description of an Audit Correction
A failed audit, in this context, means that the initial hashes did not match. This will trigger
further messages to find and correct the mistakes. Once all mistakes are corrected, the final
message indicates success for that prefix. The diagram below shows how the client's DB is
corrected when a failure is detected.

The following steps help explain the above diagram:

1. The audit event that is downloaded to start the prefix audit, is JSON:
 { "action":"audit_request", "prefix":"800", "id": 10000 }

2. The client sends the hash for all CRNs starting with 800 in JSON similar to:
 { "action":"audit_reply", "prefix":"800", "sha1":
"acb2237d0679ca88db6464eac60da96345513964" }
The 40 character SHA1 hash above is an example and its algorithm is described later.

3. The server performs the same hash algorithm for the 800 prefix on its Audit Snapshot
DB.

4. The server compares the 2 hashes. If they don't match, then the server begins to
traverse the CRN "tree". Each successive digit of a 10-digit CRN is a node in the tree
with 10 branches. The server asks the RouteLink Client for hashes like "8000",
"8001", … "8009" using more "audit" messages containing more digits. When the
server receives each response from the client, it compares the hash to its own hash for
that node. If the DBs are nearly the same, but not exact, almost all hashes will match.
The server does not pursue any branches that match, so elimination of large portions
of the tree happens quickly. The server continues to audit only the failed hashes. Each
time the server requests an audit, it provides the starting CRN value to hash. A
deeper example of a starting value would be "80055", thus telling the client to

RouteLink API 2.0 – Version 0.1
October 02, 2018

15
somos.com Somos External

calculate the hash using an SQL statement "where" clause similar to "WHERE (crn
LIKE '80055%')".

5. If the hash for a fully qualified, 10-digit CRN (a "leaf") fails to match, the server adds
a new download event to the event queue for that CRN. The event always contains all
the information (crn, ror, sha1, and full cpr). The client downloads the event, as a
normal part of its download of CRN data.

6. When the server traverses all failed hash branches for the prefix, a success message
will be returned:

{ "result" : "success" }

The server is solely responsible for directing the audit and traversing the CRN tree. The client
simply responds to the audit requests with the hash of the requested CRN, which could include
any number of digits up to a full 10-digit number. The client need not be aware of the tree
traversal process, as it could change.

5.1.4 RouteLink Server Actions on Hash Failure
When the server encounters a failed hash, it begins a traversal of the database to determine the
failed TFNs. Rather than traversing tens of millions of TFNs linearly, a more efficient algorithm
is employed, where the server requests hashes of more specific, partial, CRNs. For example, the
server requests the hash of a partial CRN of “8000”, “8001”, ... “8009” to narrow down its
search. The client does not have to determine where the failure occurs, that is the responsibility
of the server. The client only needs to be prepared to respond with any partial CRN hashes
requested by the server. The partial CRN could have any length from 1 to 10 digits.

5.1.5 Input to Hash Algorithm
To obtain a hash of a partial CRN set of data, the input stream to the hash algorithm can be
thought of as a file. A file is not at all required, but it is useful for descriptive purposes
below. The input MUST match the following format, byte for byte, or the hashes calculated by
the client and server will not match.

The format of the file (or an input stream) is as follows:

<CRN>,<ROR>,<SHA1>\n
<CRN>,<ROR>,<SHA1>\n
...and so on, one line per active CRN...
<CRN>,<ROR>,<SHA1>\n

The following points are required by the hash calculation:

1. The number of lines depends on the number of CRNs in the query. A partial CRN of
“800” results in one line for every CRN with a prefix of 800.

2. The input MUST be ordered by the CRN, ascending.
3. The CRN, ROR, and SHA1 are printable strings like “8005551212”, “AM123”, and

“acb2237d0679ca88db6464eac60da9634d51396a”.
4. There is a comma (no spaces) between the fields on each line.
5. Each [CRN,ROR,SHA1] combination ends with a single carriage return character, \n. (Not

\r\n).

RouteLink API 2.0 – Version 0.1
October 02, 2018

16
somos.com Somos External

6. Like all other lines, the last line has a CRN, ROR, and SHA1, followed by a single
terminating \n
character.

7. The SHA-1 hash is sent in lower case hexadecimal.
8. If a request for a partial CRN results in no data (no matching CRNs), then the file (or

input stream) is empty. The hash of an empty stream is:

da39a3ee5e6b4b0d3255bfef95601890afd80709

 This can be demonstrated on a linux host as follows:

$ echo -n "" | sha1sum
da39a3ee5e6b4b0d3255bfef95601890afd80709 -

The following statement is an example MySQL query run on a linux host. This query can be
used as a guide for creating a file formatted with the above rules. The query makes assumptions
about the DB schema, so modify it as needed.

$ echo "SELECT CONCAT_WS(',', crn, ror, sha1) \
FROM myCrnTable \
WHERE (crn LIKE '800%') \
ORDER BY crn" \
| mysql MyDB -u MyUser -p MyPwd \
--disable-column-names \
> myfile.txt

The following file is an example (SampleAuditFile1.txt) for the partial CRN “866449874”. Since
the partial CRN has only 9 digits the hash is for the range “8664498740” .. ‘8664498749”. For
this example, it is assumed that all CRNs have the same ROR and CPR SHA1. It is also assumed
that there are only 4 active CRNs in this range: the CRNs ending in 1, 3, 7, and 9:

8664498741,AM467,acb2237d0679ca88db6464eac60da96345513964
8664498743,AM467,acb2237d0679ca88db6464eac60da96345513964
8664498747,AM467,acb2237d0679ca88db6464eac60da96345513964
8664498749,AM467,acb2237d0679ca88db6464eac60da96345513964

This file becomes input to the SHA-1 hash algorithm. The reader is encouraged to create the
above file and apply a SHA-1 hash generator to it to confirm the hash value below. There are
several online hash generators available on the web (google “sha-1 generator”). The correct hash
for the above file is:

074d2a57e223dcf033cd44d14242036912c3ea8a

If you are working in a Linux environment, the following command may be available:

$ sha1sum SampleAuditFile1.txt
074d2a57e223dcf033cd44d14242036912c3ea8a SampleAuditFile1.txt

5.2 Audit Message Details
The following sections describe the JSON details of each message discussed above.

RouteLink API 2.0 – Version 0.1
October 02, 2018

17
somos.com Somos External

5.2.1 Audit Request from RouteLink Server
The server is the only initiator of audit requests. The server initiates an audit for a prefix by
loading an audit event onto the client's event queue. The client downloads this event and as a
result must start the audit. Only the first audit request will contain an id value.
The following is an example event that starts the audit:

{ "action" : "audit_request", "prefix" : "800", "id" : <index> }
"800" indicates one of 11 prefixes that can be audited

“id” from above request should be sent in subsequent download request after audit is done.

The server also provides other partial CRNs for the audit, besides "800". The JSON for those
messages is the same as the above, where "800" becomes more specific, partial, CRNs as the
server traverses the CRN tree if it deems it necessary.
For example:

{ "action" : "audit_request", "prefix" : "866", "id" : <value> }
// "WHERE (crn LIKE '866%')"

{ "action" : "audit_request", "prefix" : "8660", "id" : null }
// "WHERE (crn LIKE '8660%')"

{ "action" : "audit_request", "prefix" : "8661", "id" : null }
// "WHERE (crn LIKE '8661%')"

5.2.2 Audit Responses from RouteLink Client
The client is the only sender of audit reply. It issues a response containing the hash of the partial
CRN indicated in the audit request. The API Client sends this message to RouteLink URL
endpoint /routelink/v2/audit using an HTTPS POST.
The JSON of an example response to an audit of "800" is like:

{ "action":"audit_reply",
 "prefix":"800",
 "sha1": "acb2237d0679ca88db6464eac60da96345513964"
}

All CRNs for prefix 800

The JSON of an example response to an audit of "8662561" (thereby processing
8662561000..8662561999) is like:

{ "action":"audit_reply",
 "prefix":"8662561",
 "sha1": "3de1247d07398078db6487230a0da9634583096c"
}

5.2.3 Audit Completion
The RouteLink Server is the only sender of the success message. The server indicates that it is
done with the audit for a prefix with this event:

RouteLink API 2.0 – Version 0.1
October 02, 2018

18
somos.com Somos External

{ "result" : "success" }

When the client receives this downloaded message, it can assume any corrections were made
during the audit by placing new download events on its event queue.

5.3 Hash Mismatch Troubleshooting
There are scenarios where file contents may appear to be identical but the hash calculation is
resulting in mismatched values.
In the example below there are non-printable characters present that can't be seen with a file diff.

$ diff SampleAuditFileRouteLink.txt SampleAuditFileCustomer.txt
2c2
< 8005551213,QR760,bdc1126e1780e076cde352f37e0fb48823605a78

> 8005551213,QR760,bdc1126e1780e076cde352f37e0fb48823605a78

A tool to generate a hex dump of the database file can be used to determine non-printable
characters. Comparing the hex dump files between the RouteLink Client and RouteLink Server
can highlight the issue.
Contact Somos support for a RouteLink Server database prefix file.
For example, the Linux utility od was used on the above files. The bytes in red are the
hexadecimal values of each byte in the file. The difference between the two files is highlighted to
show there is an extra space at the end of the second line in the customer output file.

$ diff RLClient-HEX.txt RLServer-HEX.txt
8c8
< 0000160 61 37 38 0a

a 7 8 \n

> 0000160 61 37 38 20 0a
 a 7 8 \n

6. CPR API

6.1 /cpr api request

/cpr is an optional api.
The following is an example REST/JSON CPR request:

GET /routelink/v2/cpr?sha1=93201524444RSRRKR1 HTTPS/1.1
Authorization: Bearer c0d97b52-35d9-32c2-a37d-6126a186a844

The wget tool can issue a cpr request like this example:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer

c0d97b52-35d9-32c2-a37d-6126a186a844" https://api-
routelink.somos.com/routelink/v2/cpr?sha1=93201524444RSRRKR1

RouteLink API 2.0 – Version 0.1
October 02, 2018

19
somos.com Somos External

sha1 is required field.

6.2 /cpr api response

The response to a cpr request contains the JSON cpr and sha.

The following is an example JSON cpr response from RouteLink.

{

 "id":null,

 "sha1":"81a642c51a313314f828a0a8944e3c20be914f66",

 "cpr":"{\"node\":{\"type\":\"npa\",\"branches\": [{\"values\": [\"204\",\"226\",\

"236\",\"249\",\"250\",\"289\",\"306\",\"343\",\"365\",\"367\",\"403\",\"416\",\"418\"

,\"431\",\"437\",\"438\",\"450\",\"506\",\"514\",\"519\",\"548\",\"579\",\"581\",\"587

\",\"604\",\"613\",\"639\",\"647\",\"705\",\"709\",\"778\",\"780\",\"782\",\"807\",\"8

19\",\"825\",\"867\",\"873\",\"902\",\"905\"],\"node\":{\"type\":\"action\",\"values\"

:[{\"action_type\": \"set_carrier\",\"action_value\": \"0247\"},{\"action_type\": \"se

t_network_management_class\",\"action_value\": \"14\"}]}},{\"values\": [\"others\"],\"

node\":{\"type\":\"action\",\"values\":[{\"action_type\": \"set_carrier\",\"action_val

ue\": \"0222\"},{\"action_type\": \"set_network_management_class\",\"action_value\": \

"14\"}]}}]}}"

}

7. Error Detection
This document assumes that if the syntax of the HTTPS GET or POST is, itself, invalid, then the
typical web server failures (e.g. HTTPS 404) occur; those failures are addressed outside of this
specification. Once the HTTPS header is validated and the JSON syntax is parsed successfully,
then the next level of error detection occurs.

The RouteLink Server uses an error field in the response to a request to communicate a
parameter or JSON content failure. It also uses this response to communicate its inability to
complete the request for any other reason. A message field is supplied to provide more
information in free-form, printable, text (to aid client side debugging). The following is an
example JSON response indicating that an error was encountered by the RouteLink Server:

{

"error": "SeeTableBelowForPossibleValues",
"message": "Explanatory text is included here."

}

The following table describes the possible values for the error field.

RouteLink API 2.0 – Version 0.1
October 02, 2018

20
somos.com Somos External

Error Field Values

Error value Comments Action
“temporary” A temporary error on the server has

occurred. The HTTPS connection has
been successful to this point, but the
server is unable to complete the
request at this time. Sending the same
request again, but at a later time, is
expected to be successful. An
example could be a temporary
database outage during maintenance.

The client SHOULD retry the
request later, waiting at least 60
seconds before retrying.

“permanent” A permanent error has occurred that
MUST be addressed by the client.
Resending the request will NOT yield
success, so retrying is not reasonable
without some additional action being
taken first. An example is an invalid
field in a request.

The client MUST stop sending the
request and inspect the message
field to learn more about the
problem.
Contacting Somos may be required
based on the issue. Once the
problem has been addressed, the
client can resume communication.

If the client receives a response with an error value from the table above, it MUST take the
action described in the table above.

The message field is free-form text, where the contents are otherwise not constrained by this
specification. It allows the server to communicate the issue in printable text to aid client
debugging. The client MUST NOT depend upon any values in the message text, since the text is
subject to change at the discretion of the server at any time without notice. Up to 1000 printable
characters (including whitespace such as carriage returns, etc.) are allowed for flexibility.

It is unnecessary (and would likely be incomplete) to try to enumerate all the possible errors;
however, they all fall into one of the categories in the table above (“temporary” or “permanent”)
and are driven by the action the RouteLink Server must take. Below are some examples of errors
to aid development. The text in these examples is NOT required in the message field -- it is only
for explanatory purposes in this document.

Temporary error examples:

● A database outage has occurred at the RouteLink server.
● A maintenance window is in progress at the RouteLink server.

Permanent error examples:

● A field is missing in the request.
● An unknown field is present in the request.

RouteLink API 2.0 – Version 0.1
October 02, 2018

21
somos.com Somos External

8. Appendix

8.1 JSON Call Processing Record Structure
Call routing using the JSON Call Processing Record (CPR) is accomplished by traversing a
hierarchy of nodes containing either decision-making information or actions to perform. These
node types can be intermixed in any combination and any order. For example, action nodes may
appear at the beginning, middle, or end of a given routing branch.

All values in the JSON CPR are treated as strings.

8.1.1 Node Containers
JSON node tags are the top-level container for multiple decision node types as well as action
nodes. The below image shows a collapsed JSON call processing node. All nodes have an
associated type as shows here.

All decision trees start with a “node” identifier. The node “type” field indicates the criteria that
must be matched by a given branch in order for that branch to be traversed further.

Node Tag
Node Tag Description
type See the list of node types in the “Node Type” table below.
branches An array of branches, each of which contains one or more values.

The data contained in the values array depends on the branch type.
More information is in the “Branches Tag” table below.

qualifiers Tags
• qualifier_type
• qualifier_value

See the “Qualifiers” table below for more information.
action_type For “action” node types, this contains field contains the specific action

to be performed in the event the values associated with the branch are
a match to the routing criteria. More information can be found in the
“Action Node” table below.

action_value Value associated with the action type. Again, more information is in
the “Action Node” table below.

RouteLink API 2.0 – Version 0.1
October 02, 2018

22
somos.com Somos External

8.1.2 Branch tag
The branches tag contains an array of value/node sets. The type of data included in the “values”
tag depends on the node type with which the branch is associated.

In the example above, there are three branches associated with the top-level node. Because the
node type is “lata”, which of the branches is traversed depends on the values associated with
each.

Branches Tag
Branches Tag Description
values Contains an array of one or more values whose type depends on the

overall node type for the associated branch. Note that this field may
contain either single values or a range. In the event a range is
represented, the beginning and ending values are separated by a colon.

node This field contains decision and/or action nodes that are traversed if
any of the values are matched.

8.1.3 Decision Nodes Types
The table below contains all of the potential decision node tags and a brief description of each.

RouteLink API 2.0 – Version 0.1
October 02, 2018

23
somos.com Somos External

The figure above illustrates a single, top-level decision node fully expanded, exposing the
relationship between the node, branch, and values tags.

Node Type
Node Type Description
day_of_week 1 -- Sunday

2 -- Monday
3 -- Tuesday
4 -- Wednesday
5 -- Thursday
6 -- Friday
7 -- Saturday

day_of_year 001 -- Jan 1
002 -- Jan 2
.
.
059 – Feb 28
060 -- Feb 29
.

RouteLink API 2.0 – Version 0.1
October 02, 2018

24
somos.com Somos External

.
366 -- Dec 31

lata 3-digit LATA (000-999)
npa 3-digit ANI (NPA)
npa_nxx 6-digit ANI (NPA-NXX)
npa_nxx_xxxx 10-digit ANI (NPA-NXX-XXXX)
nxx 3-digit ANI (NXX)
percent
time_of_day The time value(s) on the branches of the Time node are specified

using the number of the quarter hour of the day. The time values
range from 0 through 96.
A value of ‟0‟ means 12:00AM if it is used at the beginning of the
time range. A value of ‟96‟ means 12:00AM if it is used at the end
of the time range.
A value of ‟01‟ means 12:15AM.
A value of ‟95‟ means 11:45PM.

others This branch is taken when no other branch has matching values.
action Tags:

• action_type
• action_value

NOTE: The time range in the time node is inclusive of the range starting value and exclusive of
the range ending value. For example, the time range of 8:00am - 5:00pm means from 8:00:00am
to 4:59:59pm. The range for day & date nodes is inclusive of the start and end values. For
example MON-FRI means from 00:00 Monday to 23:59:59 Friday.

8.1.4 Action Nodes
The following table contains all of the potential action node tags and a brief description of each.

RouteLink API 2.0 – Version 0.1
October 02, 2018

25
somos.com Somos External

Shown here is a portion of a call processing record fully expanded to illustrate the decision-
making process from the top-level to the actions. In this case, a call received from a LATA
identifier contained in the “values” field (820, 871, 884, 888) would result in following the next
level node associated with this branch. In this case, the next-level node would be the “action”
node. In the case of the “action” node, the values are no longer routing criteria. Rather, this
field contains one or more actions to be taken given this route resolution. The example above
shows that the route here would result in returning a set final treatment action to play an out-of-
band announcement would be returned to the calling entity.

Action Type
Action Type Action Value
set_carrier Carrier code
set_final_treatment Values:

• out_of_band_announcement
• vacant_code_announcement
• disconnected_number_announcement
• final_treatment_error

set_local_service_office The LSO is represented by NPA-NXX
set_network_management_class Indicates the network management class threshold
set_routing 10-digit routing number
set_template 10-digit template identifier. The final call routing

information is obtained by fetching the routing structure
associated with the template digits.

RouteLink API 2.0 – Version 0.1
October 02, 2018

26
somos.com Somos External

8.1.5 Qualifiers
Node qualifiers indicate time zone and whether or not daylight savings is in effect. Qualifier
values are present only for date/time-related decision nodes. These nodes include time_of_day,
day_of_week, and day_of_year.

Qualifiers
Qualifiers Description
qualifier_type Values:

• time_zone
• dst_flag

qualifier_value time_zone:

0 = NewFoundland Time
1 = Atlantic Time
2 = Eastern Time
3 = Central Time
4 = Mountain Time
5 = Pacific Time
6 = Yukon Time
7 = Hawaiian & Alaskan Time
8 = Bering Time

dst_flag:
1 = DLS in not in effect
2 = DLS in effect

8.1.6 JSON CPR Examples

The following sections contain samples of JSON Call Processing Records.

Time of Day with Qualifiers
The example below demonstrates the structure of a JSON CPR containing a Time of Day node
including branch qualifiers. It also shows the usage of the 15-minute declinations in determining
the time of day range.

{
 "node": {
 "type": "lata",
 "branches": [
 {
 "values": [
 "820",

RouteLink API 2.0 – Version 0.1
October 02, 2018

27
somos.com Somos External

 "822",
 "824",
 "826",
 "828",
 "830",
 "870",
 "871",
 "884",
 "888"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_final_treatment",
 "action_value": "out_of_band_announcement"
 }
]
 }
 },
 {
 "values": [
 "others"
],
 "node": {
 "type": "time_of_day",
 "qualifiers": [
 {
 "qualifier_type": "time_zone",
 "qualifier_value": "central_time_zone"
 },
 {
 "qualifier_type": "dst_flag",
 "qualifier_value": "dst_in_effect"
 }
],
 "branches": [
 {
 "values": [
 "0:48"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_final_treatment",
 "action_value": "vacant_code_announcement"
 }
]

RouteLink API 2.0 – Version 0.1
October 02, 2018

28
somos.com Somos External

 }
 },
 {
 "values": [
 "48:96"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_final_treatment",
 "action_value": "out_of_band_announcement"
 }
]
 }
 }
]
 }
 }
]
 }
}

Percent
This section contains a JSON CPR with a Percent decision node. Of particular note in decision
nodes of this type is the absence of the “Others” branch as the final node of the decision tree.
Percent decision nodes must contain branches for all percentage values. “Others” branches are
not allowed.

{
 "node": {
 "type": "lata",
 "branches": [
 {
 "values": [
 "888"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_carrier",
 "action_value": "0539"
 },
 {
 "action_type": "set_network_management_class",

RouteLink API 2.0 – Version 0.1
October 02, 2018

29
somos.com Somos External

 "action_value": "14"
 }
]
 }
 },
 {
 "values": [
 "820",
 "822",
 "832"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_carrier",
 "action_value": "0222"
 },
 {
 "action_type": "set_network_management_class",
 "action_value": "14"
 }
]
 }
 },
 {
 "values": [
 "others"
],
 "node": {
 "type": "percent",
 "branches": [
 {
 "values": [
 "80"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_carrier",
 "action_value": "0444"
 },
 {
 "action_type": "set_network_management_class",
 "action_value": "14"
 }
]
 }

RouteLink API 2.0 – Version 0.1
October 02, 2018

30
somos.com Somos External

 },
 {
 "values": [
 "20"
],
 "node": {
 "type": "action",
 "values": [
 {
 "action_type": "set_carrier",
 "action_value": "0288"
 },
 {
 "action_type": "set_network_management_class",
 "action_value": "14"
 }
]
 }
 }
]
 }
 }
]
 }
}

