Route

October 02, 2018

Version: 0.1

CONFIDENTIAL & PROPRIETARY INFORMATION OF SOMOS, INC.

The information contained in this document is confidential and proprietary to Somos, Inc. and is intended for the express
use of RouteLink customers and their designated representatives. Any unauthorized release of this information is
prohibited and punishable by law. Somos, Somos and Design, 4 Quarters Design, SMS/800 and SMS/800 Toll-Free Means
Business are trademarks of Somos, Inc.

Copyright © 2018 Somos, Inc. All rights reserved.

Somos.com o 844.HEY.SOMOS P.O. Box 8122 Somos External
f 732.514.6723 Bridgewater, NJ 08807-8122

RouteLink API 2.0 — Version 0.1

October 02, 2018

RouteLink API

For general information about this document, please call or text the Help Desk at
844.HEY.SOMOS (844.439.7666), Option 1.

All other brands or product names are trademarks or registered trademarks of their respective
companies or organizations.

Copyright © 2018 Somos, Inc. All rights reserved.

Property of Somos, Inc.

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

Revision History

Revision History

Date Version Description
October 02, 2018 0.1 Initial version of API 2.0

somos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

Table of Contents

A =T 0T 3 N o T E=3 (e 3
I X E T 1Y U N 5
2. INtroduUCtioN oo e 5
2.1 EVENt QUEUE OFErcoceeiieeeeiieeeeeieeieeeeessssssssssessssssesssssessssssesessessssesssseeseseseesseesessnnnesnnnnnnnnnnnnnnnnennes 5
B 5
3.1 DowWnload REQUEST........ccccuiiiiiei s e s e s s e s e e nn s s e ma s s e e nmss s sremnssssenmssssrennssssrnnnsnsrennnn 5
3.2 DoOWNIOAd RESPONSE.....ccecuuiiiiiiei i i irimn s rr e s rrma s rrsms s s e e nn s srsmasssrennssssrennssssennssssmennssssrnnnsnsrennnn 6
3.3 Refresh TOKeNn REQUESLcooeu it srriss e e e e s s s s e e sm s s e ema s s s e nmnss seennssssrnmnsnsrennns 9
3.4 Refresh TOKEN RESPONSEcceeuuiiiiieiiiiiiiiirieis e rreass s s s rmsss s rs s e s emns s eennssssrsmnssssenmssssrennssssrnnnsnssennns 9
4. INQtialization ... 9
4.1 Initialization Message Details...........ooiiiiii 11
£ T U T 1
5.1 Audit MesSSage FIOWS..... ..ot s s s s e s e e e e s nmmnnaas 11
5.2 Audit Message Details ... s e e 16
5.3 Hash Mismatch Troubleshooting..........co.. i e 18
6. CPR AP s nnnnnn 18
700 B o7 o = oY I =Y o [== PR 18
6.2 /CPI API FESPONSE .. ceeeueiiiiieuiiirimnaerrinssseremnssrrrmsssrrnnsssrrrnsssssrnnssssrennssssrnmsssssennssssmennssssennnsssesnnnnnrne 19
7. Error DetecCtion..... . 19
. N o oY= o T G 21
8.1 JSON Call Processing Record Structureooouiiiiiiiiiiccei e e 21
4

somos.com

Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

1. Audience

The audience for this document is the development team using the RouteLink API 2.0 to
connect to the RouteLink service. This document assumes the reader is already familiar with
the SMS/800, Toll Free Numbers, REST, JSON, and message digests.

2. Introduction

This document describes the API to download Call Routing Number (CRN) routing
information from the RouteLink Server. CRNs are frequently referred to as Toll Free
Numbers (TFNs) and are often used interchangeably in this document. In general, RouteLink
contains an Event Queue with First-In-First-Out events such as “add TFN” and “delete TEN”
to be downloaded to the RouteLink Customer (the RouteLink client), in order.

The RouteLink Client requests events to be downloaded. The events MUST be downloaded and
processed in FIFO order to guarantee the accuracy of the client's database.

3. API

The interface between the RouteLink Server and the RouteLink Client is REST/JSON. The client
sends HTTPS GET and POST requests to the server. The server responds to the GET or POST
with a JSON encoded response.

The following table enumerates the possible URLs. Each URL is preceded by "/routelink/v2".

API URLs

Url Comments
/download Download events from the Event Queue.
/initialize Set the event queue back to an initial download.
/audit Reply to an audit request from the RouteLink application
/refreshToken Request a new token with a new expiration date.
/cpr?shal= Request JSON cpr by passing shal value which is required

IMPORTANT: Due to the large amount of data exchanged between RouteLink® and the client
application, enabling gzip compression in the transport layer is strongly recommended. Compression is
enabled by the client on a per-transaction basis. Each request sent by the client must indicate support for
gzip compression by adding the appropriate information to the header. Specifically, the request header
must state the client can accept gzip encoding via the header parameter: “Accept-Encoding: gzip” as
reflected in the wget examples below.

The following is an example REST/JSON download request:

GET /routelink/v2/download HTTPS/1.1
Authorization: Bearer c0d97b52-35d9-32c2-a37d-6126al86a844

There are several tools that can be used to aid in the initial development of the download.
Below is an example that can be used in a UNIX environment.

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

The wget tool can issue a download like this example:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer
c0d97b52-35d9-32c2-a37d-6126a186a844" https://api-
routelink.somos.com/routelink/v2/download

More generally the wget command is using the access token as follows:

wget —--header="Accept-Encoding: gzip" --header="Authorization: Bearer <insert
your access token here>" https://api-
routelink.somos.com/routelink/v2/download

The download request can download several messages at once. The maximum number of
messages is 5000 at one time. To download a specific number of messages, include the
number of messages at the end or the URL as follows:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer <insert
your access token here>" https://api-
routelink.somos.com/routelink/v2/download/1000

In the above example, the client is requesting 1000 messages. If the /1000 portion of the URL
is not included, RouteLink will return a default number of messages to the client. This
optional message count is a maximum number of messages the client is requesting so
RouteLink will return up to that number of updates, depending on the number of available
updates for the client.

The client SHOULD also send to RouteLink the last message index that it received (see
message response below). The following example demonstrates the correct syntax:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer <insert
your access token here>" https://api-
routelink.somos.com/routelink/v2/download/1000?1lastIndex=78233

In the above case, RouteLink will return 1000 messages to the client where the id is greater
than 78233. The id value ranges from 0 to 2763 -1 (9,223,372,036,854,775,807). Although
the lastIndex parameter is not required, it allows RouteLink to verify that last set of messages
received by the client.

The following is an example of a JSON download response from the RouteLink that includes
3 events in a JSON array. The first and last are add events where one includes the optional
CPR.

"events": [

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

"action":"add",
"crn":"8005001212",
"ror":"RORO1",
"shal":"<40 chars>",
"cpr":null,
"id":1000

"action":"delete",
"crn":"8006001212",
"id":1001

"action":"add",
"crn":"8007001212",

"ror":"AR26",

"shal":"<40 chars>",
"cpr":"<variable length JSON CPR>"
"id":1002

Field Descriptions

Field Range Comments
an ordered array A list that MUST be processed in order to maintain the

events .
accuracy of the client's local DB.
“add”, “delete”, Add or delete a CRN from the client DB. A redundant add (for
action "cpr" or an already active CRN) must be treated as a replace of the
"audit_request" CRN’s data, such as replacing the ROR (and the CPR, if
present).
o exactly 10 Usually a 10 char CRN (e.g. “8005551212”). But for template
printable CPRes, this value can start with the number "0".
digits
ror Ito5 The RespOrg ID associated with the CRN. This is always
printable present for an "add" and never present for a "delete".
chars
shal exactly 40 The SHA-1 hash of the associated JSON CPR. A SHA-1 hash is
printable hex exactly 40 characters long, as printable hex.
digits
For example:
"E076B32E287452057362532D38E239F9462D3AF4". The field is
always present for an "add" and never present for a "delete".
cpr characters The Call Processing Record presented as a JSON construct.

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

id

number

It may also be set
to null (see
description)

October 02, 2018

This field is only present for an "add" and even then it is
optional and only sent the first time the CPR SHA-1 hash is
encountered. The client is required to save this value. The next
time the same SHA-1 hash occurs, null is sent, and the client
should refer to the earlier CPR value.

See Section “8.1 JSON Call Processing Record Structure” for a
detailed description of the CPR layout in its JSON format.

This value represents an index used by RouteLink to track
various data types. It is provided to an API client to allow it to
request specific messages that may have been missed. An API
client should provide the last (highest) id value it received from
RouteLink as the lastindex field on the next request to
RouteLink.

This value may be null when RouteLink is performing an audit
(initial audit event will have id which should be sent in
subsequent download request after successful audit) with an API
client or while requesting a CPR.

If the RouteLink Server has no events to send in the response, or if the RouteLink Server is
currently unable to reply with events for any reason, then an empty event list is sent. The
client must assume that there is no more data to currently download, and try again later.

The client must pause 60 seconds before a retry before attempting to

download again.

The JSON for an empty event array is:

{"events" :

(]

}

// the empty event array

When an add is encountered, the entire JSON CPR is hashed using the SHA-1 algorithm. The
algorithm produces a 20-byte hexadecimal value that is converted into 40 printable bytes and
sent in the "shal" parameter of the "add" event.

Somos.com

Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

When a unique SHA-1 hash is encountered for the first time by the RouteLink Server, it sends
the full JSON CPR as well as its SHA-1 hash to the RouteLink Client.

The client MUST keep track of both the SHA-1 hash and the JSON CPR in its local DB for later
audits. Also, when the RouteLink Server encounters the same SHA-1 hash in future "add"
events, the RouteLink Server only sends the SHA-1 hash given the likelihood the client already
has the full CPR (i.e. sending the CPR would be redundant). The advantage of this approach is
that bandwidth for both the client and the server is significantly reduced since a large percentage
of CPRs are re-used across CRNs. If, for any reason, the client does not have a matching CPR
for the SHA-1 it can be requested via the ‘/cpr?shal=" APIL.

Each client token has an associated expiration date. Once the token expires, the token will be
rejected by RouteLink. The following is an example REST/JSON refresh token request:

GET /routelink/v2/refreshToken HTTPS/1.1
Authorization: Bearer c0d97b52-35d9-32c2-a37d-6126al86a844

Note that the token inside the request is the "old" token about to expire (the one you are asking to
refresh). This command fails if your token has already expired. If that happens, you must
manually use the RouteLink web site to acquire a new token.

The response to a refresh token request contains the new token. Upon receiving the response, the
old token is invalid and only the new token can be used for any future API requests.

The following is an example JSON token refresh response from RouteLink.

{

"token":
"c0d97b52-35d9-32c2-a37d-6126a186a844",
"expiration":"01/09/2017 15:56:21" // always in GMT

Field Descriptions

Field Range Comments

Printable String The new token. The former token is no longer
token valid

MM/DD/YYYY The expiration timestamp of the new token. This
expiration HH:mm:ss value is always in GMT. The HH:mm:ss portion

1s in 24-hour format.

4. Initialization

When a RouteLink Client registers with the RouteLink service, the RouteLink Server resets the
client's status to download from beginning. Note that the CPR data will be sent first as a "cpr"
event followed by the CRN data as "add" events. The CPR records contain a hash value and any

somos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

CRN that uses that CPR will also contain the same hash value in its "add" event record. Once
the initial "add" events are downloaded, all subsequent downloads are changes in CRN state
("add" and "delete" events). The initial load is composed of millions of events, but this
initialization only has to occur once for the new client.

In the case where the client has an unrecoverable failure, it may need to reset all of its data and
"start over". It is left to the RouteLink Server discretion to refuse an unexpected initialization
request (for example the RouteLink Server could limit initializations to being accessible only
after manual intervention indicates it is allowed for a client).

The client communicates an initialize request to the server using the following URL:
/routelink/v2/initialize

The RouteLink Server can issue a success or failure response. The failure response follows the
same rules as presented in the Error Detection section of this document. The success JSON

response is as follows:
{ "result": "success" } // See Error Detection section for errors

Failure responses are left to the RouteLink Server's discretion but could include a rejection due
to too many initializations being requested. The error message format is described in Section 6 —
Error Detection. During the "official" certification process, a full download of all data must be
performed and requests for a single NPA will result in an error response.

A success reply will initiate logic at the RouteLink server to prepare the download data for the
client. The following is an example steps that make up the initialize process.

The client clears its DB of all CRNs.

The client sends the initialize request.

The server resets the client's status to begin the download.

The client should periodically call the /routelink/v2/download URL and data will be
sent once it is available.

e Ifthe client sends the lastIndex parameter as part of the download command, use a
value of zero following the call to initialize.

5. The client, after downloading all the "cpr" and "add" events from its event queue,
continues to receive new download events from the ongoing events that occurred
during initialize process.

e When the client consumes the last record from the initialization and starts receiving
real-time updates, a large jump in the lastIndex value is expected (i.e. greater than 1
million)

b=

Note: we are not taking the snapshot of DB for initializing the customer. Real time updates
happen on RL during client’s initialize process. We suggest client to have the referential integrity
between crn’s sha and cpr’s SHA-1 so you will know if there is a new SHA-1 value during the
initialize process.

If you find SHA-1, but there is no CPR in your db, you can either reject that message or use /cpr
api to get the latest CPR for that shal value. Refer to sec 6 for /cpr details
If you reject the message, make sure you are consuming it through live updates. While

10
sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

consuming live updates, if you see CPR value in your response, that indicates a new CPR. If
CPR is null, that shows it’s already existing.

If the RouteLink Server fails to initialize for any reason, it returns a failure response. The client
is free to retry later if the failure is temporary. Please refer to the Error Detection section of this
document to determine if an error is temporary or permanent.

The following section describes the JSON format of the "cpr" message. Once all of the CPR
messages are downloaded by the API client, "add" events for each call routing number will
follow. The client should expect to receive more than 250,000 "cpr" messages and over 40
million "add" messages. The client may download up to 1000 CPR messages in a single

transaction.
{
"events": [
{
"action":"cpr",
"shal":"<40 chars>",
"cpr":"<variable length JSON CPR>",
"id": 1000
I
{
"action":"cpr",
"shal":"<40 chars>",
"cpr":"<variable length JSON CPR>"
"id": 1001
Pl
5. Audit

The RouteLink Server maintains the master CRN/CPR database. Each downstream RouteLink
Client therefore has an effective copy of the master database by downloading the add and delete
events as they are made available by the server. As discrepancies are found events are placed on
the queue and the RouteLink Client downloads the corrective event.

List of discrepancies:

CRN missing in RouteLink client

CRN present in RouteLink client but not in RouteLink server

Mismatched ROR

Mismatched CPR

The sections that follow describe the message flow for the audit for success and failure
conditions. Lastly, this chapter enumerates the specific request and response messages used by
the audit.

The RouteLink Server decides when an audit is necessary by placing an audit event for a specific
prefix on the client's event queue. The following diagram describes the events and flow of
messages that occur when a prefix audit for 800 is started. It's important to understand that there

11
sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

will be an audit for each 8xx prefix that is valid at the time of the audit. Currently these prefixes
include 800, 833, 844, 855, 866, 877, 888, and 0. Numbers starting with a 0 denote template
records. Please note this list will be expanded as new toll-free prefixes are added such as 822.

RouteLink
(Server)
'

RouteLink
(CIiFnt)

Starting an Audit

The snapshot allows the audit to avoid a “moving target”.

i
i
.1 RoutelLink server creates a snap shot of the data to use during the audit process.
e
i
i

i When the snapshot is completed, RouteLink puts an "audit" event on the queue for

each client to download. Here is the JSON for the audit event:

0" }

This tells the RouteLink Client to audit all CRNs that start with the prefix.

I
H
I

& { "action":"audit_request”, "prefix":"80
I
I
I
I

..

I Atsome point, while
! downloading events, the
! client downloads the
, "audit” event triggering
i
i

GET /routelink/v2/download b;'.

i
'
'
Download !
Queue !
' '
| '
Master DB | i,
:) -
Audit ' ake bt
' ['
Snapslliot DB | snapshot | .- H
| T —
] ' R i
! snapshot | , "} H
& ' '
i | |oadd i
: ' "audit” H
H « o event B
1
'
1
' '
! getnext
: event L
(€ ——
———

'

'

i . '
"audit_request” 800" '
>

| When the audit event is downloaded, the API E
| Client may download new events but the

| updates must not be applied to the data set
E used during the client audit process

until the audit completes.

Client DB

'
'
'
'
'
'
'
>
|
|
|
|
l

The following message flow diagram shows the messages for the case when the audit of a prefix
is successful. Only 3 messages are required in this best case.

The term, calculate hash, is used to indicate that a SHA-1 hash (40 printable hex digits) is
generated from the data stored locally. The specific method for creating the hash is detailed in a
later section.

Somos.com

12

Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

RouteLink RoutelLink
(Server) (Clilent)
| :
Successful Audit

This scenario assumes that the audit start sequence for the
prefix is already completed and that the RoutelLink Client
downloads the "audit" event. »

Client DB

calculate hash for "800"

Audit n~a T A - ArAAL ne L
SnapspotDB ' "8oo" "acb2237d0675ca8Bdb64c4eacc0dad6345513564"

ceccccefenee

o

calculate hash for "800"

€«

At this point, the RouteLink server has the hash from the
ol client as well as its own DB hash. If the 40 character values
! match exactly, then "success” is returned.]

P\

| Once the audit is successful, the RouteLink E
¢ client can resume downloading events. ,

The diagram points out that both the sever and the client must use databases that are not
changing during the audit (to avoid auditing a moving target). When the audit event arrives at the
client through an event download, the two databases should, theoretically, be identical. The
databases are compared by having both sides calculate the hash for the given prefix.

The “prefix” in the audit indicates to the algorithm to process all CRNs that start with that prefix.
In SQL terms, the SELECT can be thought of as using a "where" clause like (in this example the
prefix was 800):

“WHERE (crn LIKE '800%'")”.

The server will request a hash value over a given prefix using the audit request message and the
client must calculate the hash and return the result to the server using an audit reply message.
The audit reply message is sent to the server using an HTTPS POST. An example of sending an
audit reply using wget is as follows:

wget —--header="Content-Type: application/json" --header="Authorization: Bearer
<access token>" --post-data='{"action":"audit reply","prefix":"800","shal":
"<40 character hash value>"}' https://api-
routelink.somos.com/routelink/v2/audit

The server compares the client's hash to its own hash to see if the two match. Of course, the
calculation of the hash must be done using data fed into the algorithm in the exact same order by
both sides. There is no requirement that the two sides use the same DB schema — but, the data
must be fed into the SHA-1 algorithm in the same order. The data includes the CRNs, RORs, and
CPR hashes (not the CPRs themselves). The hash calculation and the order of the data is
described in more detail later.

13

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

A failed audit, in this context, means that the initial hashes did not match. This will trigger
further messages to find and correct the mistakes. Once all mistakes are corrected, the final
message indicates success for that prefix. The diagram below shows how the client's DB is
corrected when a failure is detected.

Snapspot DB

RouteLink Routelink
(Server) (Clilent)
L i

Failure Correction Audit
- 1
This scenario assumes that the audit start sequence for the prefix is already completed | i

___andthat the RouteLmk Client downloads the "audit” event from the event _q_u_eyg___,,': Client DB
Audit r e

|
E calculate hash for "800"
|

|
| calculate hash for "800"

&
€

' Assuming the hashes do NOT match, RouteLink requests more specific hashes /

calculate hash for "8000"

g ———
2
S
N =
£
t
5
W
D
[
e
0
5
0
h
™

When the hashes do no(match, RouteLink continues to request more specific hashes (8000, 8001, ... 8009). It :
traverses the CRN tree (ONLY for failed hashes) until a /eof is reached. A leaf is all 10 digits in the CRN.]

1 |
1 |
| |
i : calculate hash for
i | "8005551212"
| calculate hash for ac78da%634567432d :——’
' "8005551212" ! H
! event queue 1 | If a leaf hash does not match, then RouteLink corrects the mistake by placing a new download event |
! ' add 1 ! on the event queue. This includes the crn, ror, shal, and full cpr to guarantee the leaf is |
1
H I “download" | | corrected. The client downloads this event as a normal download event. 7
| N event Pt ettty St b bbb L Db L L L L L Ll A L 6 L L A0NN
! :(——i“ ,,,,,,,,,,,,,,,,,,, : The RouteLink continues to traverse the tree, |
! k““_“L : .+*! requesting hashes, and when complete, Routelink |
|

s AT sendssuccess. 7
|

The following steps help explain the above diagram:

Somos.com

The audit event that is downloaded to start the prefix audit, is JSON:
{ "action":"audit request", "prefix":"800", "id": 10000 }

The client sends the hash for all CRNs starting with 800 in JSON similar to:

"acb2237d0679ca88db6464eac60da96345513964" }

The 40 character SHA1 hash above is an example and its algorithm is described later.
The server performs the same hash algorithm for the 800 prefix on its Audit Snapshot
DB.

The server compares the 2 hashes. If they don't match, then the server begins to
traverse the CRN "tree". Each successive digit of a 10-digit CRN is a node in the tree
with 10 branches. The server asks the RouteLink Client for hashes like "8000",
"8001", ... "8009" using more "audit" messages containing more digits. When the
server receives each response from the client, it compares the hash to its own hash for
that node. If the DBs are nearly the same, but not exact, almost all hashes will match.
The server does not pursue any branches that match, so elimination of large portions
of the tree happens quickly. The server continues to audit only the failed hashes. Each
time the server requests an audit, it provides the starting CRN value to hash. A
deeper example of a starting value would be "80055", thus telling the client to

14

Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

calculate the hash using an SQL statement "where" clause similar to "wHERE (crn
LIKE '80055%')".

5. If the hash for a fully qualified, 10-digit CRN (a "leaf") fails to match, the server adds
a new download event to the event queue for that CRN. The event a/ways contains all
the information (crn, ror, shal, and full cpr). The client downloads the event, as a
normal part of its download of CRN data.

6. When the server traverses all failed hash branches for the prefix, a success message
will be returned:
{ "result" : "success" }

The server is solely responsible for directing the audit and traversing the CRN tree. The client
simply responds to the audit requests with the hash of the requested CRN, which could include
any number of digits up to a full 10-digit number. The client need not be aware of the tree
traversal process, as it could change.

When the server encounters a failed hash, it begins a traversal of the database to determine the
failed TFNs. Rather than traversing tens of millions of TFNs linearly, a more efficient algorithm
is employed, where the server requests hashes of more specific, partial, CRNs. For example, the
server requests the hash of a partial CRN of “8000”, “8001”, ... “8009” to narrow down its
search. The client does not have to determine where the failure occurs, that is the responsibility
of the server. The client only needs to be prepared to respond with any partial CRN hashes
requested by the server. The partial CRN could have any length from 1 to 10 digits.

To obtain a hash of a partial CRN set of data, the input stream to the hash algorithm can be
thought of as a file. 4 file is not at all required, but it is useful for descriptive purposes

below. The input MUST match the following format, byte for byte, or the hashes calculated by
the client and server will not match.

The format of the file (or an input stream) is as follows:
<CRN>, <ROR>, <SHA1>\n
<CRN>, <ROR>, <SHA1>\n
...and so on, one line per active CRN...
<CRN>, <ROR>, <SHA1>\n

The following points are required by the hash calculation:

1. The number of lines depends on the number of CRNs in the query. A partial CRN of
“800” results in one line for every CRN with a prefix of 800.
The input MUST be ordered by the CRN, ascending.

The CRN, ROR, and SHA1 are printable strings like “8005551212~, “am123~, and
“acb2237d0679ca88db6464eac60dad9634d51396a”.

There is a comma (no spaces) between the fields on each line.

Each [cry, rROR, sHA1] combination ends with a single carriage return character, \n. (Not
\r\n) .

Nk Wb

15

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

6. Like all other lines, the last line has a CRN, ROR, and SHA1, followed by a single
terminating \n
character.

7. The SHA-1 hash is sent in lower case hexadecimal.

8. If arequest for a partial CRN results in no data (no matching CRNs), then the file (or
input stream) is empty. The hash of an empty stream is:

da39%a3eebebb4b0d3255bfef95601890a£d80709

This can be demonstrated on a linux host as follows:

$ echo -n "" | shalsum
da39%a3eeb5e6b4b0d3255bfef95601890a£d80709 -

The following statement is an example MySQL query run on a linux host. This query can be
used as a guide for creating a file formatted with the above rules. The query makes assumptions
about the DB schema, so modify it as needed.

$ echo "SELECT CONCAT Ws(',', crn, ror, shal) \
FROM myCrnTable \
WHERE (crn LIKE '800%") \
ORDER BY crn" \
\ mysgl MyDB -u MyUser -p MyPwd \
--disable-column-names \

> myfile.txt

The following file is an example (SampleAuditFilel.txt) for the partial CRN “866449874”. Since
the partial CRN has only 9 digits the hash is for the range “8664498740 .. ‘8664498749”. For
this example, it is assumed that all CRNs have the same ROR and CPR SHAI. It is also assumed
that there are only 4 active CRNs in this range: the CRNs ending in 1, 3, 7, and 9:

8664498741 ,AM467,acb2237d0679ca88db6464eac60da96345513964
8664498743,AM467,acb2237d0679ca88db6464eac60da96345513964
8664498747,AM467,acb2237d0679ca88db6464eac60da96345513964
8664498749,AM467,acb2237d0679ca88db6464eac60da96345513964

This file becomes input to the SHA-1 hash algorithm. The reader is encouraged to create the
above file and apply a SHA-1 hash generator to it to confirm the hash value below. There are
several online hash generators available on the web (google “sha-1 generator”). The correct hash
for the above file is:

074d2a57e223dcf033cd44d14242036912c3ea8a

If you are working in a Linux environment, the following command may be available:

$ shalsum SampleAuditFilel.txt
074d2a57e223dcf033cd44d14242036912c3eal8a SampleAuditFilel.txt

The following sections describe the JSON details of each message discussed above.

16

somos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

The server is the only initiator of audit requests. The server initiates an audit for a prefix by
loading an audit event onto the client's event queue. The client downloads this event and as a
result must start the audit. Only the first audit request will contain an id value.

The following is an example event that starts the audit:

"800" indicates one of 11 prefixes that can be audited
“id” from above request should be sent in subsequent download request after audit is done.

The server also provides other partial CRNs for the audit, besides "800". The JSON for those
messages is the same as the above, where "800" becomes more specific, partial, CRNs as the
server traverses the CRN tree if it deems it necessary.

For example:

66", "id" : <value> }
// "WHERE (crn LIKE '866%')"

660", "id" : null }
// "WHERE (crn LIKE '8660%")"

661", "id" : null }

// "WHERE (crn LIKE '8661%")"

The client is the only sender of audit reply. It issues a response containing the hash of the partial
CRN indicated in the audit request. The API Client sends this message to RouteLink URL
endpoint /routelink/v2/audit using an HTTPS POST.

The JSON of an example response to an audit of "800" is like:

All CRNs for prefix 800

The JSON of an example response to an audit of "8662561" (thereby processing
8662561000..8662561999) is like:

8662561
3del247d07398078db6487230a0da%9634583096¢

The RouteLink Server is the only sender of the success message. The server indicates that it is
done with the audit for a prefix with this event:

17

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

{ "result" : "success" }

When the client receives this downloaded message, it can assume any corrections were made
during the audit by placing new download events on its event queue.

There are scenarios where file contents may appear to be identical but the hash calculation is
resulting in mismatched values.
In the example below there are non-printable characters present that can't be seen with a file diff.

$ diff SampleAuditFileRouteLink.txt SampleAuditFileCustomer.txt
2c2
< 8005551213,0R760,bdc1126e1780e076cde352£37e0£b48823605a78

> 8005551213,QR760,bdcl126e1780e076cde352£37e0£b48823605a78

A tool to generate a hex dump of the database file can be used to determine non-printable
characters. Comparing the hex dump files between the RouteLink Client and RouteLink Server
can highlight the issue.

Contact Somos support for a RouteLink Server database prefix file.

For example, the Linux utility od was used on the above files. The bytes in red are the
hexadecimal values of each byte in the file. The difference between the two files is highlighted to
show there is an extra space at the end of the second line in the customer output file.

$ diff RLClient-HEX.txt RLServer-HEX.txt

8c8
< 0000160 61 37 38 Oa
7 8 \n
> 0000160 61 37 38 20 0a

6. CPRAPI

/cpr is an optional api.
The following is an example REST/JSON CPR request:

GET /routelink/v2/cpr?shal=93201524444RSRRKR1 HTTPS/1.1
Authorization: Bearer c0d97b52-35d9-32c2-a37d-6126al86a844

The wget tool can issue a cpr request like this example:

wget --header="Accept-Encoding: gzip" --header="Authorization: Bearer
c0d97052-35d9-32c2-a37d-6126a186a844" https://api-
routelink.somos.com/routelink/v2/cpr?shal=93201524444RSRRKR1

18

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

shal is required field.

The response to a cpr request contains the JSON cpr and sha.

The following is an example JSON cpr response from RouteLink.

"id":null,

"shal":"81a642c51a313314£828a0a8944e3c20be914f66",

"epr":"{\"node\": {\"type\":\"npa\", \"branches\": [{\"values\": [\"204\",\"226\",\
"236\", \"249\",\"250\",\"289\",\"306\",\"343\",\"365\",\"367\",\"403\",\"416\",\"418\"
A \"431\", \"437\",\"438\", \"450\",\"506\",\"514\", \"519\", \"548\", \"579\", \"581\", \"587
A" AT604N", AT6LI3\", \N"639\", \"64 T\, \"TO5\", \"TOO\", \"TT8\", \"T80\", \"T782\",\"807\",\"8
LO\",\"825\", \"867\",\"873\",\"902\",\"905\"], \"node\": {\"type\":\"action\",\"values\"
:[{\"action type\": \"set carrier\",\"action value\": \"0247\"},{\"action type\": \"se
t network management class\",\"action value\": \"14\"}]}},{\"values\": [\"others\"],\"
node\": {\"type\":\"action\",\"values\": [{\"action type\": \"set carrier\",\"action val
ue\": \"0222\"}, {\"action type\": \"set network management class\",\"action value\": \
"TAN"IIREI T
}

7. Error Detection

This document assumes that if the syntax of the HTTPS GET or POST is, itself, invalid, then the
typical web server failures (e.g. HTTPS 404) occur; those failures are addressed outside of this
specification. Once the HTTPS header is validated and the JSON syntax is parsed successfully,
then the next level of error detection occurs.

The RouteLink Server uses an error field in the response to a request to communicate a
parameter or JSON content failure. It also uses this response to communicate its inability to
complete the request for any other reason. A message field is supplied to provide more
information in free-form, printable, text (to aid client side debugging). The following is an
example JSON response indicating that an error was encountered by the RouteLink Server:

{
"error": "SeeTableBelowForPossibleValues",
"message": "Explanatory text is included here."

The following table describes the possible values for the error field.

19

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

Error Field Values

Error value Comments Action
“temporary” A temporary error on the server has The client SHOULD retry the
occurred. The HTTPS connection has request later, waiting at least 60
been successful to this point, but the seconds before retrying.

server is unable to complete the
request at this time. Sending the same
request again, but at a later time, is
expected to be successful. An
example could be a temporary
database outage during maintenance.

“permanent” A permanent error has occurred that The client MUST stop sending the
MUST be addressed by the client. request and inspect the message
Resending the request will NOT yield field to learn more about the
success, so retrying is not reasonable problem.
without some additional action being Contacting Somos may be required
taken first. An example is an invalid based on the issue. Once the
field in a request. problem has been addressed, the

client can resume communication.

If the client receives a response with an error value from the table above, it MUST take the
action described in the table above.

The message field is free-form text, where the contents are otherwise not constrained by this
specification. It allows the server to communicate the issue in printable text to aid client
debugging. The client MUST NOT depend upon any values in the message text, since the text is
subject to change at the discretion of the server at any time without notice. Up to 1000 printable
characters (including whitespace such as carriage returns, etc.) are allowed for flexibility.

It is unnecessary (and would likely be incomplete) to try to enumerate all the possible errors;
however, they all fall into one of the categories in the table above (“temporary” or “permanent”)
and are driven by the action the RouteLink Server must take. Below are some examples of errors
to aid development. The text in these examples is NOT required in the message field -- it is only
for explanatory purposes in this document.

Temporary error examples:
e A database outage has occurred at the RouteLink server.
e A maintenance window is in progress at the RouteLink server.

Permanent error examples:
e A field is missing in the request.
e An unknown field is present in the request.

20
sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

8. Appendix

Call routing using the JSON Call Processing Record (CPR) is accomplished by traversing a
hierarchy of nodes containing either decision-making information or actions to perform. These
node types can be intermixed in any combination and any order. For example, action nodes may
appear at the beginning, middle, or end of a given routing branch.

All values in the JSON CPR are treated as strings.
JSON node tags are the top-level container for multiple decision node types as well as action

nodes. The below image shows a collapsed JSON call processing node. All nodes have an
associated type as shows here.

{
"node": {
"type": "lata",
"branches": [[E3]
}
}

All decision trees start with a “node” identifier. The node “type” field indicates the criteria that
must be matched by a given branch in order for that branch to be traversed further.

Node Tag Description
type See the list of node types in the “Node Type” table below.
branches An array of branches, each of which contains one or more values.

The data contained in the values array depends on the branch type.
More information is in the “Branches Tag” table below.
qualifiers Tags
e qualifier_type
e qualifier_value
See the “Qualifiers” table below for more information.
action_type For “action” node types, this contains field contains the specific action
to be performed in the event the values associated with the branch are
a match to the routing criteria. More information can be found in the
“Action Node” table below.
action_value Value associated with the action type. Again, more information is in
the “Action Node” table below.

21
sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

The branches tag contains an array of value/node sets. The type of data included in the “values”
tag depends on the node type with which the branch is associated.

"node": {
"type": "lata",
"branches": [
{EB},
{&=3},
(=3}
]
}
}

In the example above, there are three branches associated with the top-level node. Because the
node type is “lata”, which of the branches is traversed depends on the values associated with

each.
Branches Tag Description
values Contains an array of one or more values whose type depends on the

overall node type for the associated branch. Note that this field may
contain either single values or a range. In the event a range is
represented, the beginning and ending values are separated by a colon.

node This field contains decision and/or action nodes that are traversed if
any of the values are matched.

The table below contains all of the potential decision node tags and a brief description of each.

22
sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

"node": {

I|.type“: lllatall,
"branches": [

{

"values": [
"888"

15

"node": {E&3J}

}s
{

"values": [
"820",
"822",
"832"

15

"node": {E&3}

}s
{

"values": [
"others"

15

"node

}
]
}
}

October 02, 2018

The figure above illustrates a single, top-level decision node fully expanded, exposing the

relationship between the node, branch, and values tags.

Node Type
day of week

day of year

Somos.com

Description

1 -- Sunday
2 -- Monday
3 -- Tuesday
4 -- Wednesday
5 -- Thursday
6 -- Friday
7 -- Saturday

001 --Jan1
002 --Jan 2

059 — Feb 28
060 -- Feb 29

23

Somos External

RouteLink API 2.0 — Version 0.1

lata

npa

npa_nxx
npa_nxx_Xxxx
nxx

percent

time of day

others
action

October 02, 2018

366 -- Dec 31

3-digit LATA (000-999)

3-digit ANI (NPA)

6-digit ANI (NPA-NXX)

10-digit ANI (NPA-NXX-XXXX)
3-digit ANI (NXX)

The time value(s) on the branches of the Time node are specified
using the number of the quarter hour of the day. The time values
range from 0 through 96.
A value of “0* means 12:00AM if it is used at the beginning of the
time range. A value of “96™ means 12:00AM if it is used at the end
of the time range.
A value of “01° means 12:15AM.
A value of “95“ means 11:45PM.
This branch is taken when no other branch has matching values.
Tags:

e action_type

e action_value

NOTE: The time range in the time node is inclusive of the range starting value and exclusive of
the range ending value. For example, the time range of 8:00am - 5:00pm means from 8:00:00am
to 4:59:59pm. The range for day & date nodes is inclusive of the start and end values. For
example MON-FRI means from 00:00 Monday to 23:59:59 Friday.

The following table contains all of the potential action node tags and a brief description of each.

Somos.com

24

Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

"node": {
"type": "lata",
"branches": [
{

"values": [
"820",
"871",
"884",
"888"

1

"node": {
"type": "action",
"values": [

{
"action_type": "set_final_treatment",
"action_value": "out_of_band_announcement™

¥

1
}
b
{

"values": [
Shown here is a portion of a call processing record fully expanded to illustrate the decision-
making process from the top-level to the actions. In this case, a call received from a LATA
identifier contained in the “values” field (820, 871, 884, 888) would result in following the next
level node associated with this branch. In this case, the next-level node would be the “action”
node. In the case of the “action” node, the values are no longer routing criteria. Rather, this
field contains one or more actions to be taken given this route resolution. The example above
shows that the route here would result in returning a set final treatment action to play an out-of-
band announcement would be returned to the calling entity.

Action Type Action Value
set _carrier Carrier code
set final treatment Values:
e out_of band_announcement
e vacant_code_announcement
e disconnected_number_announcement

e final treatment error

set local service office The LSO is represented by NPA-NXX

set network management class Indicates the network management class threshold
set_routing 10-digit routing number

set_template 10-digit template identifier. The final call routing

information is obtained by fetching the routing structure
associated with the template digits.

25

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

Node qualifiers indicate time zone and whether or not daylight savings is in effect. Qualifier
values are present only for date/time-related decision nodes. These nodes include time of day,
day of week, and day of year.

Qualifiers Description
qualifier _type Values:
e time_zone
e dst_flag
qualifier value time zone:

0 = NewFoundland Time

1 = Atlantic Time

2 = Eastern Time

3 = Central Time

4 = Mountain Time

5 = Pacific Time

6 = Yukon Time

7 = Hawaiian & Alaskan Time

8 = Bering Time
dst_flag:

1 = DLS in not in effect

2 =DLS in effect

The following sections contain samples of JSON Call Processing Records.

Time of Day with Qualifiers

The example below demonstrates the structure of a JSON CPR containing a Time of Day node
including branch qualifiers. It also shows the usage of the 15-minute declinations in determining
the time of day range.

{
"node": {
"type": "lata",
"branches": [
{
"values": [
"820",

26

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1

October 02, 2018

"g22",
"gz4n,
"g826",
"g28",
"830",
"870",
"871",
"gg4",
"ggg"
1,
"node": {
"type": "action",
"values": [
{
"action type": "set final treatment",
"action value": "out of band announcement"

}
by
{
"values": [
"others"
1,
"node": {
"type": "time of day",
"qualifiers": [
{
"qualifier type": "time zone",
"qualifier value": "central time zone"

"qualifier type": "dst flag",
"qualifier value": "dst in effect"
}
1
"branches": [
{
"values": [
"0:48"
1
"node": {
"type": "action",
"values": [
{
"action type": "set final treatment",
"action value": "vacant code announcement"

27

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

"values": [
"48:96"
1,
"node": {
"type": "action",
"values": [
{
"action type": "set final treatment",
"action value": "out of band announcement"

Percent

This section contains a JSON CPR with a Percent decision node. Of particular note in decision
nodes of this type is the absence of the “Others” branch as the final node of the decision tree.
Percent decision nodes must contain branches for all percentage values. “Others” branches are

not allowed.

"node": {
"type": "lata",
"branches": [
{
"values": [
"g88"
1,
"node": {
"type": "action",
"values": [
{
"action type": "set carrier",
"action value": "0539"
by
{
"action type": "set network management class",

28

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

"action value": "14"

}
b
{
"values": [
"g20",
"g22",
"g32"
1,
"node": {
"type": "action",
"values": [
{
"action type": "set carrier",
"action value": "0222"

"action type": "set network management class",
"action value": "14"

}
}I
{
"values": [
"others"
]I
"node": {
"type": "percent",
"branches": [
{
"values": [
"80"
]I
"node": {
"type": "action",
"values": [
{
"action type": "set carrier",
"action value": "0444"

"action type": "set network management class",
"action value": "14"

29

sSomos.com Somos External

RouteLink API 2.0 — Version 0.1
October 02, 2018

}I
{
"values": [
"20"
]I
"node": {
"type": "action",
"values": [
{
"action type": "set carrier",
"action value": "0288"

"action type": "set network management class",
"action value": "14"

30

sSomos.com Somos External

